
Viability of the Method of 
Characteristics for unsteady, 
non-isothermal, real gas 
analysis in piping networks

14th International Conference on Pressure Surges 
April 12-14, 2023  |  Eindoven, Netherlands  |  Copyright© TU Eindhoven

Scott A. Lang P.E.
Applied Flow Technology
Colorado Springs, Colorado, USA

Mark A. Dudley
Applied Flow Technology
Colorado Springs, Colorado, USA



Viability of the Method of Characteristics for unsteady, non-isothermal, real gas 
analysis in piping networks 
 
S A Lang, M A Dudley 
Applied Flow Technology, USA 
 
 
 
 
 
 
 
 
ABSTRACT 
 
The Method of Characteristics is widely preferred for analyzing unsteady liquid networks,  in part due to the straightforward modeling 
of complex inline equipment. More general analyses, including unsteady gas flow, tend to favor Finite Volume formulations due to 
their conservative nature. These solvers are comparatively complex, making their implementation and use more challenging. 
Advantages and disadvantages of each method for the analysis of gas networks are discussed here. The Method of Characteristics has 
limitations, but it is shown here to be a technique worthy of consideration for typical engineering analyses. 
 
 
1 INTRODUCTION 
 
1.1 Motivation 
Accurate numerical modeling of large piping networks is often critical to ensuring their optimal and safe operation. Many such 
techniques are established for liquid systems [1] [2], but tools for compressible gas are both rarer and more complex [3] [4] [5]. 
 
Steady analysis of compressible systems is common, while analysis of acoustic transients in large compressible flow piping networks 
appears to be an uncommon practice. Problematic situations are often either unaddressed (putting the system at risk) or avoided (via 
expensive overdesign), which may be due to a lack of knowledge that unchecked compressible surge can pose serious risk to the 
integrity and safety of the system. Designers or operators may be unaware of practical tools to analyze gas surge and thus resort to 
simple empirical rules, unclear codes and standards, or overbuilt systems [6]. 
 
Consequently, it is desired to develop a tool that allows for practical analysis of unsteady compressible flow for piping networks. It is 
argued here that some amount of error in results is acceptable if the tool allows for both ease of use and straightforward development 
of complex devices, especially when the usual alternative is no analysis whatsoever. 
 
1.2 Accuracy and practicality 
In piping network analysis, an engineer rarely seeks an exact answer. Even if one was attainable, piping networks change regularly. 
Equipment is frequently added, replaced, or removed to mitigate component wear and degradation. Few system analysts will know 
with certainty the exact specifications of every component in the system. Even with exact numerical solutions, approximation and 
uncertainty will still creep their way in. 
 
Safety factors or design margins can account for this uncertainty. Because it is impossible to eliminate this uncertainty, it is 
unproductive to demand perfection in a practical numerical model. Some uncertainty is acceptable, provided the model enables an 
engineer to make valid and actionable conclusions for the system’s design or operation. Given the choice between a very accurate but 
difficult to use tool, and a less accurate but more accessible tool, many engineers will sacrifice some accuracy for better ease of use 
and more immediate results. 
 
1.3 Common approaches to simulation 
Two general frameworks to solving the non-linear equations of gas flow are discussed here: the Method of Characteristics (MOC), and 
the Finite Volume Method (FVM). This paper is not intended to be a survey of all methods for unsteady gas analysis, nor is it intended 
to be a survey of all possible MOC or FVM formulations – only selected approaches for each method are discussed herein. 
 
 
2 A BRIEF REVIEW OF FUNDAMENTALS 
 
2.1 First principles 
Accurate compressible flow solutions must obey conservation of mass (𝑚𝑚), momentum (𝑚𝑚𝑚𝑚), and energy (𝑚𝑚𝑚𝑚). Also needed is an 
appropriate equation of state. 
 



2.2 Appropriate assumptions and simplifications for piping networks 
In a typical network, piping lengths are orders of magnitude larger than piping diameters, and any given pipe has constant diameter. 
These conditions make non-axial flow effects negligible in most cases, so a one-dimensional analysis is reasonable. 
 
In one dimensional flow, three forces act on the fluid, barring more exotic situations: 

• Upstream and downstream pressure forces (𝑝𝑝𝑝𝑝). 
• Gravity (𝑚𝑚𝑚𝑚). 
• Friction, which imparts a shear stress (𝜏𝜏) that opposes flow along the outer surface of the control volume (𝜋𝜋𝜋𝜋 ⋅ 𝛿𝛿𝛿𝛿). 

Determining 𝜏𝜏 analytically is extremely difficult – it is much more practical to use an empirical relation. Models of varying 
complexity exist – herein it is assumed the frictional term can be estimated from the conditions at the previous time level, 
referred to as a quasi-steady friction approximation [7]. The Darcy-Weisbach equation (𝑑𝑑𝑑𝑑 = − (𝑓𝑓𝑓𝑓𝑓𝑓|𝑢𝑢| ⋅ 𝑑𝑑𝑑𝑑) 2𝐷𝐷⁄ ) is 
assumed to apply, meaning that the frictional force can be determined with 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐴𝐴 ⋅ 𝑑𝑑𝑑𝑑 = −𝐴𝐴 ⋅ 𝑑𝑑𝑑𝑑(𝑓𝑓𝑓𝑓𝑓𝑓|𝑢𝑢| 2𝐷𝐷⁄ ). For 
later simplicity, we define the value ℱ = −𝑓𝑓𝑓𝑓𝑓𝑓|𝑢𝑢| 2𝐷𝐷⁄ .  

 
Heat transfer (𝑄̇𝑄) is assumed to be known, or to be a function only of the previous time level. The only work done by the system is 
assumed to be pressure work (𝑊̇𝑊 = 𝛿𝛿(𝜌𝜌𝜌𝜌𝜌𝜌)). 
 
2.3 Conservation 
The mass, momentum, and energy conservation laws for one dimension are: 
 

𝑫𝑫(𝒎𝒎)
𝑫𝑫𝑫𝑫

= 𝟎𝟎 ,             
𝑫𝑫(𝒎𝒎𝒖𝒖)
𝑫𝑫𝑫𝑫 = �𝑭𝑭 ,            

𝑫𝑫(𝒎𝒎𝒎𝒎)
𝑫𝑫𝑫𝑫 = 𝑸̇𝑸 − 𝑾̇𝑾 , (𝟏𝟏) 

 
where 𝐷𝐷/𝐷𝐷𝐷𝐷 represents a material derivative, or rate of change within a material element. The boundaries of a material element move 
with the flow field, and the volume is closed to mass transfer. A control volume fixed in space is often simpler – intuitively, one can 
understand that the flux of some conserved property into or out of a volume corresponds to an increase or decrease in the total conserved 
property within the volume. For example, 
 

𝐷𝐷(𝑚𝑚)
𝐷𝐷𝐷𝐷

= 0     →      
𝑑𝑑
𝑑𝑑𝑑𝑑 �𝜌𝜌𝑑𝑑𝑑𝑑 + �𝜌𝜌𝜌𝜌 𝑑𝑑𝑑𝑑 = 0 . (2) 

 
With fundamental mathematics, these integral conservation equations can be transformed into differential form if and only if the flow 
field is smooth [8] [9]. To be compact, the matrix form of these equations is presented, with subscripts denoting partial derivatives. 
 

�
𝜌𝜌
𝜌𝜌𝜌𝜌
𝜌𝜌𝜌𝜌
�
𝑡𝑡

+ �
𝜌𝜌𝜌𝜌

𝜌𝜌𝑢𝑢2 + 𝑃𝑃
𝑢𝑢(𝜌𝜌𝜌𝜌 + 𝑃𝑃)

�
𝑥𝑥

= �
0

∑𝐹𝐹 𝑉𝑉⁄
𝑄̇𝑄 𝑉𝑉⁄

� (3) 

 
This formulation is in conservation form: it directly relates temporal rate of change, flux, and source terms, physically capturing the 
meaning of the conservation laws. When the source terms are zero, these equations reduce to the one-dimensional Euler equations. 
 
2.4 Equation of state 
The system of partial differential equations (3) has four unknowns and closure requires an equation of state. We consider two simple 
options. First, a calorically perfect gas, one with constant specific heats, follows the gamma-law equation of state: 
 

𝑒𝑒 = 𝑒̂𝑒 +
𝑢𝑢2

2 + 𝑔𝑔𝑔𝑔 =
𝑃𝑃

𝜌𝜌(𝛾𝛾 − 1)  +
𝑢𝑢2

2 + 𝑔𝑔𝑔𝑔 . (4) 

 
Where 𝛾𝛾 denotes the ratio of specific heats, 𝑐𝑐𝑝𝑝/𝑐𝑐𝑣𝑣, and 𝑒̂𝑒 is the specific internal energy. Second, it is instructive to consider a case 
where the flow is isentropic and isothermal [8]. In this case, we assert the speed of sound, 𝑐𝑐, is a constant value, and we can state that 
changes in density are proportional to changes in pressure. 
 

𝑐𝑐 = ��
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�𝑠𝑠

= const.    →      𝑑𝑑𝑑𝑑 =
1
𝑐𝑐2 𝑑𝑑𝑑𝑑

(5) 

 
2.4.1 Real gas 
A real gas deviates from the calorically perfect relation in equation (4), strongly under some conditions. Using an ideal gas equation 
of state can significantly impact the physical realism of the model [10], so an alternative is desirable. Embedding a two or three 
parameter equation of state in analytic form into the equations is possible but dramatically complicates the equations and still foregoes 
some accuracy. 
 



It is therefore desired to use an arbitrary real gas model that cannot be analytically combined with the conservation equations. This is 
possible if there exists an equation that represents specific energy 𝑒𝑒 in terms of density, velocity, and pressure. Using only fundamental 
thermodynamic identities [11], it is possible to construct such a relationship: 
 

𝑑𝑑𝑑𝑑 =
𝑐𝑐𝑝𝑝
𝛽𝛽𝛽𝛽𝑐𝑐2 𝑑𝑑𝑑𝑑 + �

𝑃𝑃
𝜌𝜌 −

𝑐𝑐𝑝𝑝
𝛽𝛽𝛽𝛽� 𝑑𝑑𝑑𝑑 + 𝑢𝑢𝑢𝑢𝑢𝑢 + 𝑔𝑔𝑔𝑔𝑔𝑔 . (6) 

 
Equation (6) is valid for any fluid, and via combination with equation (3), one algorithm can adapt to an arbitrary equation of state. 
The arbitrary equation of state can be used to determine the values of the thermodynamic quantities 𝑐𝑐𝑝𝑝, 𝛽𝛽, and 𝑐𝑐 for a given pressure 
and density. Note that this equation effectively linearizes the thermodynamic behavior of the real fluid around the specified pressure 
and density. 
 
2.4.2 Simplifications for discussion herein 
For clarity of discussion, the remainder of this paper will discuss the gamma-law gas (4) for gas flows, and equation (5) for liquid 
flows. The only source term considered will be the frictional term as described in section 2.2. 
 
 
3 THE METHOD OF CHARACTERISTICS 
 
3.1 Overview 
Hyperbolic systems represent wave-like phenomena – disturbances propagate through the domain at a finite speed along 
characteristics. While the general behavior is described by a coupled system of partial differential equations, the behavior along a 
characteristic requires only a single ordinary differential equation. 
 
The method of characteristics is a mathematical approach to determine these ordinary differential equations. This method can be 
discretized and applied to a grid of nodes – an overall technique referred to here as the Method of Characteristics (MOC). 
 
3.1.1 Some advantages of the MOC 
The MOC is well known for unsteady analysis in liquid full networks, with a wealth of knowledge built up over many decades of 
research [1] [2]. It is known to be accurate enough for practical purposes, and most modern advancements cover extension to more 
exotic problems, such as non-Newtonian fluids [12], fluid-structure interaction [13], unsteady friction calculations [14], or 
computational improvements [15].  
 
The decomposition of the problem into characteristics explicitly tracks physical waves in the solution, maintaining sharp wavefronts, 
which is highly desirable for acoustic analysis. Additionally, the problem can be represented by simple and explicit linear compatibility 
equations which are easily applied to boundaries of potentially complex nature, and readily extend to modeling complex phenomena 
such as transient forces or cavitation [1]. 
 
3.1.2 Some disadvantages of the MOC 
The traditional MOC is not conservative – even for liquid flow. For a purist, this alone may fully disbar the method from consideration. 
But its widespread practical use clearly indicates that non-conservative does not mean untrustworthy. 
 
The standard MOC formulation for liquid flow relies on critical assumptions that have negligible effect on accuracy in typical systems. 
These assumptions are invalid for gas flow, so extending the MOC to compressible flow entails more significant estimations, which 
increase uncertainty. Because of the strongly non-linear behavior of unsteady gas dynamics, the MOC suffers from lower accuracy as 
flow conditions become more extreme. High Mach number flows, or flows exhibiting strong shocks, see notably uncertain predictions. 
 
3.2 Liquid flow 
3.2.1 The hyperbolic system 
Liquid analysis generally uses the equation of state described by (5), which eliminates the need for the energy conservation equation 
entirely. We further assert that bulk velocity 𝑢𝑢 is negligible compared to the sonic velocity 𝑐𝑐, and therefore the advective terms 𝑢𝑢𝑢𝑢𝑥𝑥 
and 𝑢𝑢𝜌𝜌𝑥𝑥 (see equation (11)) are negligible. Under these conditions, and the assumptions noted in section 2.4.2, equation (3) can be 
manipulated algebraically into the nonconservative, primitive form, quasilinear hyperbolic system: 
 

�
𝑢𝑢
𝑝𝑝�𝑡𝑡

+ �
0 1 𝜌𝜌⁄
𝜌𝜌𝑐𝑐2 0 �  �

𝑢𝑢
𝑝𝑝�𝑥𝑥

= �ℱ 𝜌𝜌⁄
0
�  . (7) 

 
The eigenvalues of the matrix in equation (7) are 𝜆𝜆 = ±𝑐𝑐, which dictate the characteristic speeds of the system. One can also calculate 
the corresponding left eigenvectors of the matrix as 𝑙𝑙 = [±𝜌𝜌𝜌𝜌 1]. Combining the eigenvectors with equation (7) results in the 
decoupled ordinary differential equations: 
 

𝑑𝑑𝑑𝑑 ± 𝜌𝜌𝜌𝜌 ⋅ 𝑑𝑑𝑑𝑑 =  ±𝑐𝑐ℱ       𝑜𝑜𝑜𝑜     𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ = ±𝑐𝑐 . (8) 
 



These two ordinary differential equations describe the acoustic characteristics present in liquid flow. They are symmetric due to their 
slopes (𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ ) differing only in sign. 
 
3.2.2 Integration 
Integrating the left-hand side of (8) is trivial as both density and sonic velocity are assumed fixed for liquid analysis. The integral on 
the right is more interesting – the velocity 𝑢𝑢 embedded in ℱ (see section 2.2) changes in time. Because the time behavior of 𝑢𝑢 is 
unknown, the integral must be evaluated with an assumed behavior. Typically, this is done with a geometric mean [16], making the 
result implicit. To simplify the comparison between liquid and gas flow, the left Reimann sum is taken, giving the fully explicit result: 
 

Δ𝑝𝑝 ± 𝜌𝜌𝜌𝜌 ⋅ Δ𝑢𝑢 = ±𝑐𝑐ℱ ⋅ Δ𝑡𝑡          𝑜𝑜𝑜𝑜         𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ = ±𝑐𝑐 . (9) 
 
Manipulation of (9) gives compatibility equations (10) wherein the bracketed quantities are constants for a given calculation. The 
existence of two unknowns and two equations provides a direct solution for the new values of pressure and velocity. 
 

𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 = [𝑝𝑝 ± 𝑐𝑐ℱ ⋅ Δ𝑡𝑡 ± 𝜌𝜌𝜌𝜌𝜌𝜌]�������������
𝐶𝐶±

∓ [𝜌𝜌𝜌𝜌]�
𝐵𝐵±

𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛        𝑜𝑜𝑜𝑜    
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = ±𝑐𝑐 (10) 

 
3.2.3 Discrete solution 
The compatibility equations (10) are applicable at any location. For solutions in a finite length pipe, they are solved at equally spaced 
discrete nodes. The characteristic velocities, ±𝑐𝑐, naturally generate a rectangular grid of nodes in the 𝑥𝑥, 𝑡𝑡-plane (Figure 1a).  
 

 
Figure 1: (a) A rectangular grid (b) An independent solution 

 
Solutions at each timestep are computed independently at every node (Figure 1b). To maintain the grid structure, pipe length or sonic 
velocity must be varied artificially [1]. 
 
3.2.4 General junctions and boundary conditions 
The availability of the linear and explicit compatibility equations makes the handling of inline junctions and boundary conditions 
straightforward. For example, a centrifugal pump between two constant diameter pipes might operate on a curve Δ𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 = 100− 𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛2 . 
Equation (10) can be arranged to determine Δ𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 = (𝐶𝐶− + 𝐵𝐵−)𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛 − (𝐶𝐶+ − 𝐵𝐵+)𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛, and the pair of equations can be solved 
directly for 𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛. More complex arrangements are still relatively easy to compute, perhaps by iterative routines. 
 
3.2.5 Conservation 
Looking at the mass conservation equation in (3), it is immediately apparent that for a constant density assumption, no change in 
velocity is possible. Clearly this cannot be the case if there is transient flow, and therefore the MOC for liquid flow is not truly a 
conservative solution. Even so, it is still the preferred method for network analysis of liquid transients, which implies that strict 
conservation is not necessary for practical analysis. 
 
It is important to note that, while the MOC does not enforce conservation, it also does not neglect it. The solution still originates from 
the fundamental conservation laws. 
 
3.3 Gas flow 
3.3.1 The hyperbolic system 
Under the conditions specified in section 2.4.2, equations (3) and (4) can be manipulated into the nonconservative, primitive form, 
quasilinear hyperbolic system: 
 

�
𝜌𝜌
𝑢𝑢
𝑝𝑝
�
𝑡𝑡

+ �
𝑢𝑢 𝜌𝜌 0
0 𝑢𝑢 1 𝜌𝜌⁄
0 𝜌𝜌𝑐𝑐2 𝑢𝑢

�  �
𝜌𝜌
𝑢𝑢
𝑝𝑝
�
𝑥𝑥

= �
0

ℱ 𝜌𝜌⁄
(𝛾𝛾 − 1)𝑢𝑢ℱ

�  . (11) 

 
The eigenvalues and left eigenvectors of the matrix in equation (11) are: 
 

𝜆𝜆1 = 𝑢𝑢 − 𝑐𝑐 ,                         𝜆𝜆2 = 𝑢𝑢 ,                         𝜆𝜆3 = 𝑢𝑢 + 𝑐𝑐 , (12) 
𝑙𝑙1 = [0 −𝜌𝜌𝜌𝜌 1] ,         𝑙𝑙2 = [1 0 − 1 𝑐𝑐2⁄ ] ,         𝑙𝑙3 = [0 𝜌𝜌𝜌𝜌 1] . (13) 

 



When combined with the system described by equation (11), these equations yield the decoupled ordinary differential equations (14) / 
(15) which describe acoustic and advective characteristics, respectively. 
 

𝑑𝑑𝑑𝑑 ± 𝜌𝜌𝜌𝜌 ⋅ 𝑑𝑑𝑑𝑑 =  [±𝑐𝑐 − (𝛾𝛾 − 1)𝑢𝑢] ℱ      𝑜𝑜𝑜𝑜     𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ = 𝑢𝑢 ± 𝑐𝑐 , (14) 

𝑑𝑑𝑑𝑑 −
1
𝑐𝑐2 𝑑𝑑𝑑𝑑 =

(𝛾𝛾 − 1)𝑢𝑢
𝑐𝑐2 ℱ       𝑜𝑜𝑜𝑜   𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ = 𝑢𝑢 . (15) 

 
It is worth pausing here to compare these equations and the liquid flow equations (8). The advective characteristic is new – it conveys 
information about the density in the system, which can change in gasses but not in liquids. The acoustic characteristics are, however, 
remarkably similar. The only differences are the modifying term on the right-hand side of the ordinary differential equations, and the 
differing positive and negative characteristic speeds. In fact, if the local velocity is zero, equation (14) is exactly equation (8). 
 
3.3.2 Integration 
For a gas, the density and sonic velocity cannot be considered fixed. Therefore, integrating equations (14-15) is no longer trivial. 
Nonetheless, the simplest approach is to assume the thermodynamic quantities as fixed and again take the left Reimann sum. It should 
be expected that this step may impart serious error when the flow is highly non-linear, and the calculation step is too large. 
 

𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 = [𝑝𝑝 + (±𝑐𝑐 − (𝛾𝛾 − 1)𝑢𝑢)ℱ ⋅ Δ𝑡𝑡 ± 𝜌𝜌𝜌𝜌𝜌𝜌]�����������������������
𝐶𝐶±

∓ [𝜌𝜌𝜌𝜌]�
𝐵𝐵±

𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛         𝑜𝑜𝑜𝑜    𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ = ±𝑐𝑐 (16) 
 

𝜌𝜌𝑛𝑛𝑛𝑛𝑛𝑛 = �𝜌𝜌 +
(𝛾𝛾 − 1)𝑢𝑢

𝑐𝑐2 ℱ −
1
𝑐𝑐2 𝑝𝑝������������������

𝐶𝐶𝑃𝑃

+ �
1
𝑐𝑐2��
𝐵𝐵𝑃𝑃

𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 (17) 

 
Despite there being three equations (16-17) and three unknowns, the two acoustic characteristics are solved independently of the 
advective characteristic, and the results of this solution are used to find a new value for density. 
 
3.3.3 Discrete solution 
For gas flow, the local velocity and sonic velocity change as a particle moves along the characteristic, causing the path to curve. 
However, evaluating the integrals with a left Riemann sum implicitly assumes the characteristic speed over the finite path of integration 
is constant – approximating the characteristics to be straight lines as shown in Figure 2. 
 

 
Figure 2: Characteristics at (a) zero flow (b) positive flow (c) Mach 1 

 
The characteristics are symmetric only for stagnant flow (Figure 2a). As velocity increases, all three characteristics will tilt in the 
direction of flow (Figure 2b), and at a Mach number of 1, the downwind characteristic will be vertical (Figure 2c), indicating that no 
information can flow against the stream. In supersonic flow, all three characteristics have a slope of the same sign.  
 
Unlike in Figure 1, the gas characteristic lines of Figure 2 do not intersect a prior node. A variation of properties between the nodes 
must be assumed to determine the conditions at the base of the characteristic. A simple linear interpolation profile is chosen here. 
While a linear interpolation does not have a high order of accuracy, unstable behavior is less likely [17]. Complex interpolations are 
certainly possible, though more care must be taken in selecting an appropriate scheme. 
 
3.3.4 General junctions and boundary conditions 
Just as for liquid flow, the availability of linear and explicit compatibility equations (18) makes the handling of complex inline junctions 
straightforward. The equations make it possible to capture nearly any behavior in a junction. Iterative routines are often more complex 
than in liquid flow, but the fundamental idea is the same.  
 

𝑝𝑝 = 𝐶𝐶± ∓ 𝐵𝐵±𝑢𝑢                 𝜌𝜌 = 𝐶𝐶𝑃𝑃 + 𝐵𝐵𝑃𝑃𝑝𝑝 (18) 
 
A branching-type junction can also utilize these equations. For example, a simple branch with no losses must have a single stagnation 
pressure and density at the common point of connection. A trial pressure and density can be asserted at the common point, and the 
compatibility equations for all connections can be evaluated in turn. This evaluation may indicate an imbalance in conservation of mass 
or energy around the branch. This discrepancy can be used to appropriately adjust the trial pressure and density up or down, driving it 
to a correct value via iteration. 
 
 



4 THE FINITE VOLUME METHOD 
 
4.1 Overview 
The Finite Volume Method (FVM) enforces [18] conservation in the hyperbolic system via integration of equation (3) over a finite 
control volume. It is easy to understand that for some arbitrary volume without a source term, the net amount of conserved quantity 
entering the volume must cause an equal increase in said quantity within the volume. Adopting a careful approach in applying this 
integration numerically ensures conservation for every volume in the model. 
 
4.1.1 Some advantages of the FVM  
Most modern general flow analysis research seems focused on the FVM. It is fair to state that it is strongly preferred for general flow 
analysis, perhaps because of the strict enforcement of conservation laws, which is an extremely desirable trait. It is also general enough 
in concept to allow for the inclusion of a dramatic range of effects, such as electromagnetic or even relativistic effects [19]. A properly 
implemented scheme that accounts for all pertinent physical effects will approach the true solution as the computational element count 
increases. 
 
An assumption made in forming the differential system of equations (4) was that the behavior of the conserved variables is smooth. If 
the behavior is not smooth, a required step in transforming the integral(s) (3) into the differential equation(s) (4) is not valid. Therefore, 
the differential form cannot be solved for if a property has a jump discontinuity. A central advantage of the FVM is the use of the more 
fundamental integral form, which does not rule out the presence of discontinuities in properties. 
 
4.1.2 Some disadvantages of the FVM 
Discrete numerical solutions require approximation of some kind - most FVM analyses utilizing fewer computational volumes will 
still be inaccurate, even while the masses, momentums, and energies in a cell are conserved. To offset this, using more computational 
volumes runs the risk of becoming computationally time-consuming – especially for high-order accurate, multi-dimensional, or multi-
physical FVM schemes. It is a fair assessment to extend this line of thinking to large piping systems. 
 
The FVM nominally “stores” volume-averaged cell values at a location within the cell but requires intercell fluxes to update these 
values. These fluxes are not necessarily straightforward to compute and often require a method for approximating properties at intercell 
locations, introducing computational error. The methods to compute these fluxes are commonly known, but many flux schemes have 
a variety of strengths and weaknesses [9]. This typically makes FVM methods more advantageous on a case-by-case basis, rather than 
within a generalized scope.  
 
A robust FVM tends to be significantly more complicated [8] [9] than the MOC formulation presented in section 3. These complexities 
make the development of sophisticated boundaries much more nuanced than the comparable MOC solution. While FVM excels at 
implementing known value or known flux boundaries, the implementation of junction-style boundary conditions (such as valves or 
pumps) is more complex. These types of boundaries require conditionally known properties at the intercell location rather than at the 
internal node. For the FVM, this would require approximation and iteration. 
 
4.2 A common approach 
This paper is not intended to cover in detail the many possible FVM variations – many excellent resources exist to that end [8] [9] [18] 
[19]. Instead, we discuss the foundations of a common approach in modern codes. The goal is to describe a high-resolution scheme 
that is computationally efficient, captures shocks, handles source terms, and allows for complex boundaries. 
 
Stated briefly, a usual approach is to use some type of Reconstruct, Evolve, Average algorithm [8] [9]. The reconstruction step involves 
determining an approximate variation of properties within a particular computational cell from the previous step results. The evolution 
step uses the reconstructed profile to determine the intercell fluxes and moves, or evolves, the profile accordingly. Finally, the average 
step determines new cell-averaged values from the evolved profile for use in the next time step. 
 
4.2.1 Options for reconstruction 
The simplest approach is to assume that values within computation cells prevail throughout the cell volume, which results in a 
piecewise-constant variation of the conserved properties along the computational domain. The Godunov method, which “revolutionized 
the field of computational fluid dynamics” [8, p. 77], uses a piecewise-constant profile as one of its building blocks, which limits the 
accuracy that can be attained [9]. 
 
The next simplest option is to assume a piecewise-linear variation within each cell, which can improve the overall method to second-
order accuracy. The linear profile is chosen to be upstream centered, a component of the MUSCL (Monotonic Upstream-centered 
Scheme for Conservation Laws) scheme [20]. The current cell value and upstream cell value are assumed to define a slope in the 
current cell. It does not mean that a continuous variation throughout the domain is assumed – as with the piecewise-constant choice, 
there are still discontinuities at each cell interface. 
 
To evolve this solution, the flux must be calculated at the interfaces. However, the discontinuities mean that the derivatives are infinite, 
and equation (3) cannot be used. Instead, a Riemann problem is solved at each interface. 
 



4.2.2 Monotonicity, slope limiters, and Total Variation 
Before solving the Riemann problem, we must address the fact that a piecewise-linear profile has the propensity to cause spurious 
oscillations in the solution near strong discontinuities in the flow. These oscillations are unphysical – a monotonic solution is desired. 
 
An option to enforce monotonicity is to apply a slope limiter. Properly designed slope limiters conform to a condition known as Total 
Variation Diminishing (TVD) [8] [9]. This property enforces a physically reasonable constraint that the variation – pressure rise across 
a shock for example – must diminish with time, across the entire domain. Application of a TVD slope limiter is a key component of 
the MUSCL scheme. 
 
4.2.3 The Riemann problem  
The Riemann problem considers a system of conservation equations and specifies initial values which are constant except for a single 
discontinuity at the center of the domain. It is of particular interest because exact solutions can be found. 
This problem is of great interest to the FVM because the reconstruction steps taken so far have generated a Riemann problem at every 
cell interface. Therefore, the questions of determining the intercell flux and solving the Riemann problem are effectively identical. 
 
The shock tube problem, a famous test problem discussed by Sod [21], is an example of the Riemann problem for the Euler equations. 
In a typical case, the discontinuous initial values will generate a rarefaction wave, a contact discontinuity, and a shock, and this variety 
of conditions lends the problem value as a verification case. 
 
It is interesting to note that the MOC is a key component in the exact solution of the Riemann problem. The characteristics in the 
system interact to help form a particular wave structure, but the MOC alone is not enough to solve the problem. When characteristics 
of the same family converge, a shock is formed, which requires application of the Rankine-Hugoniot conditions. When they diverge, 
a rarefaction or expansion fan is generated, and isentropic relations are needed. The Riemann problem can be solved exactly, but the 
solution does not have a closed form, so computationally expensive iteration is required. 
 
4.2.3.1 Approximate Riemann solvers 
It is obvious that the true variation of properties along the domain is not piecewise-constant, nor piecewise-linear, and this estimation 
will impart error. It is not generally worth the effort of procuring an exact solution to a Riemann problem based on approximate data. 
Instead, an approximate solver can be used, which attempts to estimate with some reasonable degree of accuracy the solution structure, 
without iteration.  
 
One such approximate solver is HLLC (Harten-Lax-van Leer-Contact) [22], which uses an estimated pressure to approximate the 
highest characteristic speed in both directions, estimates the speed of the advection wave, and then estimates the flux at the interface. 
 
4.2.4 Handling source terms 
Attempting to solve the system of partial differential equations with source terms directly is quite difficult. Instead, this problem can 
be split into two simpler sub-problems, in what is known as a fractional-step approach [8] [9]. The homogenous (no source terms) 
problem is solved as above. Then, the result of that solution is used as an initial condition for the ordinary differential equation based 
on the source terms, which when solved gives the values for the new time level. 
 
This approach is only first order accurate, and it may introduce splitting error if the operations are not commutative. A second order 
accurate approach is to take a half-step application of the source term ordinary differential equation before and after the full step 
homogeneous solution [9]. 
 
4.2.5 General junctions and boundary conditions 
A typical approach to boundaries in the FVM is to define ghost cells (additional computation cells outside of the physical domain). 
The ghost cell conditions are modified at the beginning of a step to create the intended conditions at the boundary face. This process is 
significantly more difficult when trying to model devices like centrifugal compressors or valves. 
 
The authors know from first-hand experience that attempting analytic solutions for even “simple” junctions like a valve is exceedingly 
complicated even with the MOC compatibility equations. Developing such solutions for a wide variety of junctions may be theoretically 
possible, but it would be very impractical. Instead, for both FVM and MOC, the authors suggest focusing on iterative techniques. 
5 EXAMPLES 
 
5.1 Low shock strength ideal shock tube 
This problem considers a perfect gas (𝛾𝛾 = 1.4) without friction. The dimensionless system has a length of 1, and a discontinuity at 0.5. 
The initial conditions are: 𝜌𝜌𝐿𝐿 = 1,𝑢𝑢𝐿𝐿 = 0,𝑝𝑝𝐿𝐿 = 1,𝜌𝜌𝑅𝑅 = 0.125,𝑢𝑢𝑅𝑅 = 0, 𝑝𝑝𝑅𝑅 = 0.2. The CFL number for MOC application is 
approximately 0.9. The results are presented at time 0.2.  
 



 
Figure 3: Low shock strength. Exact (solid) and 100 node MOC (dots). 

 
Figure 3 shows the exact results compared against the MOC with 100 nodes. The MOC results are not exact, but they are what many 
would consider accurate for practical purposes. Figure 4 shows the effect of varying node count at the shock front and at the contact 
discontinuity. As expected, adding more nodes makes the solution approach the true values. 
 

 
Figure 4: Effect of varying MOC node count on the contact discontinuity and shock. Exact (solid), 50 (triangle), 100 (cross), 

500 (plus), 2000 (dot) 
 
5.2 Moderate shock strength ideal shock tube 
This example is identical to the previous example except that 𝑝𝑝𝑅𝑅 has been lowered to 0.1. This represents the original Sod shock tube 
problem [21]. Figure 5 shows exact results, MOC results, and the Godunov method applied with a Roe approximate Riemann solver 
[22]. Both the MOC and FVM results were determined with 200 nodes. 
 
The MOC seems to do reasonably well, except for the internal energy prediction, which the authors believe is due primarily to the 
MOC formulation presented not having any specific features for shock capturing. One textbook author specifically refers to this 
weakness with a note that a “moderate shock pressure ratio of 4.08” gives results that are within “reasonable accuracy for many 
engineering applications” (Moody, [11, p. 459]). 
 

 
Figure 5: Moderate shock strength. Exact (solid), MOC (light triangle), Godunov (dark cross) 

 



In investigating this discrepancy, the authors found increasing conservation error across the shock with increasing shock strength. The 
Riemann problem, used for the analytic solution of the shock tube problem, specifically incorporates the Rankine-Hugoniot conditions 
that enforce conservation across the shock. The MOC as described here does not enforce these conditions, so it is not surprising that 
they are not met. Figure 6 shows the relationship between the pressure ratio 𝑝𝑝𝐿𝐿/𝑝𝑝𝑅𝑅 and percentage loss of conserved properties across 
the shock. Note that this test was carried out by modifying only 𝑝𝑝𝑅𝑅, with all other values as indicated by the prior example. 
 

 
Figure 6: Conservation loss across shock vs. shock tube pressure ratio in the MOC 

 
5.3 Steady choked flow  
It is perhaps most intuitive to understand the conservation problems with the MOC when observing a steady simulation. It is expected 
that mass and energy flow into and out of an adiabatic pipe are equal. The results in Figure 7 were generated with a hydraulically 
smooth 30 m pipe of 10 cm internal diameter, an inflow of 10 kg/sec at 300 °C, discharging to atmospheric pressure. The fluid is steam 
with a Redlich-Kwong EOS. The analytic results were determined with AFT Arrow [23], a steady-state tool which enforces 
conservation explicitly, and the MOC results were determined with AFT xStream [23], an unsteady tool based on the MOC formulation 
described in this paper. 
 

 
Figure 7: Steady-state choked flow, actual and MOC results. Exact (solid), 11 nodes (dots), 41 nodes (triangles), 81 nodes 

(crosses). 
 
The MOC is reporting an unexpected mass and energy flow loss down the pipe – this is due to the estimations imparted by the profile 
assumption and numeric integration [24]. The non-linear velocity profile is the primary cause, as the finite characteristic lines are 
unaware of the increase in velocity over their length. As the segments are made smaller, the non-linear effects become smaller and 
therefore the approximation becomes more accurate. This example considers choked flow, a situation that will naturally exacerbate 
these problems. For sensitive and exacting applications, these results may not be acceptable. But for a typical network-level analysis, 
these results are generally satisfactory – the small error here is unlikely to impact any design decisions made. 
 
5.4 A shock tube with friction  
This example is similar in structure to the low shock strength problem investigated in section 5.1 but includes the effect of friction 
using the Darcy-Weisbach and Colebrook-White equations. The system is no longer dimensionless. We consider a perfect gas in a 
pipeline of length 2000 m with a discontinuity at 1000 m. Initial conditions are 𝜌𝜌𝐿𝐿 = 1 kg m3⁄ , 𝑢𝑢𝐿𝐿 = 0 m/s, 𝑝𝑝𝐿𝐿 = 1 bar, 𝜌𝜌𝑅𝑅 =
0.125 kg/m3, 𝑢𝑢𝑅𝑅 = 0 m/s, and 𝑝𝑝𝑅𝑅 = 0.2 bar – creating the same dimensionless ratios as section 5.1. For friction calculations, we 
consider the pipe diameter 𝐷𝐷 = 10.22 cm and absolute roughness 𝜖𝜖 = 4.571 × 10−3 cm. 
 
The results were generated at the times of 0.2 and 1 seconds with a count of 200 computational nodes for both the MOC and FVM. 
The MOC results were generated with AFT xStream [23], while the FVM results were generated with an in-house validated program. 
The in-house program uses a Godunov scheme and a second-order fractional-step method (see section 4.2.4) to update the conserved 



variables to the following computational time. The source term (friction) is computed with a 2nd order Runge-Kutta method while 
intercell fluxes are approximated with the Roe method (see section 4.2.3.1). 
 
Figure 8 compares the static pressure and velocity results between the MOC and FVM methods. The comparative results align well 
throughout the length of the tube. The FVM scheme implies the wave has traveled slightly faster downstream in comparison to the 
MOC scheme in both the 0.2 second and 1 second snapshots. This is likely due to the MOC struggling to preserve information across 
shocks at higher Mach numbers – the discontinuity reaches 𝑀𝑀𝑀𝑀 ≈ 0.6 at the beginning of the simulation, which would cause the MOC 
to lose a small amount of conserved property information early in the simulation, but the effects do not worsen with time. 
 

 
Figure 8: Friction shock tube comparison. MOC (dots) and FVM (crosses). Pressure in bar, velocity in meters per second, 

and length in meters. 
 
 
6 CONCLUSIONS AND FUTURE WORK 
 
The MOC as a tool will never replace FVM, which excels in both accuracy and flexibility. However, industrial tools must consider 
practicality of both development of tools and their use. To that end, the authors believe the tests shown here demonstrate that the MOC 
is worthy of consideration for the analysis of unsteady compressible transients under some conditions and should be considered a 
valuable piece of the engineer’s toolkit. 
 
The authors intend to investigate further the effects of real gasses, source terms, and complex boundaries in both solution methods. 
The present work was intended primarily to show that the MOC is a viable option for the analysis of compressible flow in piping 
networks, and therefore focused on relatively simple test cases. The authors believe the method shows promise, and that further research 
is warranted. 
 
Like the FVM, future investigations could result in vast improvements in simulation quality. The simplest FVM formulations often 
have results that are very inaccurate, while complex schemes can make them some of the most accurate tools available. The authors 
believe it is reasonable to assume that with dedicated research effort, dramatic improvements to the MOC are possible, building on 
results that are already practically actionable in many engineering contexts. 
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